
1	

Interfaces and Inheritance

Based on The Java™ Tutorial
(http://docs.oracle.com/javase/tutorial/java/IandI/index.html)

Based on the notes from David Fernandez-Baca and Steve Kautz
Bryn Mawr College

CS206 Intro to Data Structures

Abstraction in Software Design
Abstraction is a way to reduce coupling:
View components in terms of their essential features,
ignoring details that arenʼt relevant to our particular
concerns. Each component provides a well-defined
interface specifying exactly how we can interact with it.

2	

Interfaces in Java
•  An interface is a contract between module writers,

specifying exactly how they will communicate.
•  An interface in Java is a bunch of public methods

without bodies. That is, an interface specifies the
method names, return types, and parameter types,
and nothing else.

public interface ISpeaking {
 void speak();
}

Hereʼs a simple example: public class Bird implements ISpeaking{
 @Override
 public void speak(){
 System.out.println("tweet");
 }
}

An implementation of this interface:

Interface
•  The implements keyword means:

o  “I promise to provide an implementation (a method body
containing actual code) for each method specified by the
ISpeaking interface.”

•  The “@Override” is an annotation. It is not required
for the code to compile and run, but it is very useful: it
tells the compiler that your intention is to implement a
method defined in an interface (or, we will see later, a
superclass). That way, the compiler can check that you
have the method signature correct.

•  Implementing an interface is the simplest form of
inheritance. We say that Bird is a subtype of ISpeaking,
and ISpeaking is a supertype of Bird.

3	

Implementation of an Interface

•  Using a Java interface formalizes and enforces the
“separation of interface from implementation” that
is one of the benefits of encapsulation.

•  The purpose of programming with interfaces is to
reduce coupling.

public class Person implements ISpeaking {
 @Override
 public void speak() {
 System.out.println("Hi!");
 }
}

There can be other implementations of the same interface, e.g.,

Implementation of an Interface
public interface ISpeaking { void speak(); }
public interface ILicensable { License getLicense(); }

public class Dog implements ISpeaking, ILicensable {
 private String name;
 private License license;
 public Dog(String name, License license) {
 this.name = name; this.license = license;
 }
 @Override
 public void speak() {
 System.out.println("woof");
 }
 @Override
 public License getLicense() { return license; }
 public String getName() { return name; }
}

Consider with the
interfaces Ispeaking
and ILicensable.
Let us ignore the
License class itself,
which is not needed for
this discussion.

4	

Notes on Interface
•  You can declare an object whose type is an interface, so the

following is legal:
o  ISpeaking b; // OK

•  You cannot instantiate an interface variable, so the following
is illegal:
o  ISpeaking b = new ISpeaking(); // NO!!

•  If an interface variable refers to an object, that object must
belong to a class that implements that interface. For example:
o  ISpeaking b = new Bird(); // OK

•  All methods in a Java interface are public, so the public
keyword is redundant.

•  A class that implements an interface must implement all the
methods declared in the interface.

Inheritance (by Class Extension)

•  We say Retriever is a subclass or subtype of Dog (it is also a
subtype of ISpeaking and of ILicensable) and Dog is a
superclass or supertype of Retriever.

•  In Java, a class can implement more than one interface, but
can extend only one other class.

public class Retriever extends Dog {
 public Retriever(String name, License license) {
 super(name, license); //call superclass (Dog) constructor
 }
 @Override public void speak() {
 System.out.println("raooou");
 }
 public Bird retrieve() { return new Bird();}
}

5	

Class Hierarchies

•  The superclass/subclass (supertype/subtype) relationships are indicated by
the arrows with the big triangles.

•  A dotted line means “implements (an interface)” and a solid line means
“extends (a class)”. Drawing all the arrows pointing upwards allows us to
see the subtype-supertype relations easily.

•  We also call the subtype relation the “is-a” relation: A Retriever is a type
of Dog, a Dog is a type of ISpeaking.

Recall:Access Levels and Visibility

6	

What Does a Subclass Inherit?
•  A subclass inherits all of the public and protected

members of its parent (even if they are in different
packages).

•  If the subclass is in the same package as its parent, it
also inherits the package-private members of the
parent.

•  A subclass does NOT inherit the private members of
its parent class. However, if the superclass has public
or protected methods for accessing its private fields,
these can also be used by the subclass.

What You Can Do in a Subclass
•  Use the inherited fields and methods directly.
•  Declare a field in the subclass with the same name as the one

in the superclass, thus hiding it (not recommended).
•  Declare new fields and/or new methods in the subclass that

are not in the superclass.
•  Write a new instance method in the subclass that has the

same signature as the one in the superclass, thus overriding it.
•  Write a new static method in the subclass that has the same

signature as the one in the superclass, thus hiding it.
•  Write a subclass constructor that invokes the constructor of

the superclass, either implicitly or by using the keyword super.

7	

Casting Objects
•  Casting shows the use of an object of one type in place

of another type, among the objects permitted by
inheritance and implementations.

•  Animal obj = new Cat(); //obj is both Animal and Cat
(implicit casting).

•  Cat aCat = obj; //Compile-time error!
•  Cat aCat = (Cat) obj; //explicit casting
Note: You can make a logical test as to the type of a
particular object using the instanceof operator. This can
save you from a runtime error owing to an improper cast.
For example:
if (obj instanceof Cat) { Cat aCat= (Cat)obj; }

Overriding and Hiding Methods
•  An instance method in a subclass with the same

signature and return type as an instance method in
the superclass overrides the superclass's method.

•  Recall that signature of a method consists of the
method’s name and the parameter types.

•  If a subclass defines a class method with the same
signature as a class method in the superclass, the
method in the subclass hides the one in the
superclass.

8	

Distinction between Hiding and Overriding

•  The version of the overridden method that gets
invoked is the one in the subclass.

•  The version of the hidden method that gets invoked
depends on where it is invoked (from the superclass
or the subclass).

Hiding

Overriding and Hiding Methods
public class Animal {
 public static void testClassMethod() {
 System.out.println("The class" +
 " method in Animal.");
 }
 public void testInstanceMethod() {
 System.out.println("The instance "
 + " method in Animal.");
 }
}

public class Cat extends Animal {
 public static void testClassMethod() {
 System.out.println("The class method" +
 " in Cat.");
 }
 public void testInstanceMethod() {
 System.out.println("The instance method" +
 " in Cat.");
 }

 public static void main(String[] args) {
 Cat myCat = new Cat();
 Animal myAnimal = myCat;
 Animal.testClassMethod();
 myAnimal.testInstanceMethod();
 }
} Overriding

9	

Access Level for Overriding Methods
•  The access specifier for an overriding method can

allow more, but not less, access than the overridden
method.
o E.g., a protected instance method in the superclass

can be made public, but not private, in the subclass.

Hiding Fields(not recommended!)
•  Within a class, a field that has the same name as a

field in the superclass hides the superclass's field,
even if their types are different.

•  Within the subclass, the field in the superclass cannot
be referenced by its simple name.

•  Instead, the field must be accessed through super.
•  If a variable is non-private, you should never shadow

it (re-declare a variable with the same name) in the
subclass, even though this is allowed by the compiler.

10	

Recap
Two kinds of inheritance:
•  Implementing an interface: it means you agree to

provide code for all the methods that the interface
declares. The purpose of using Java interfaces is to
decouple components.

•  Inheritance (class extension): it allows a subclass to
inherit all attributes and operations of its superclass.
Additionally, class extension allow us to
o  add new attributes or behavior (new instance variables

and/or methods) to a class and
o modify behavior by overriding existing methods.
Class extension aids us in writing classes that share and
reuse code.

Polymorphism
Polymorphism means that a variable of a given type T can hold
a reference to an object of any of Tʼs subtypes. Consider the
statement below:

Statement 1 does a few things:
•  It invokes a constructor to instantiate an object of type Dog.

The constructor returns a reference to the object.
•  It declares a variable s of type ISpeaking. In fact, it declares

that s will reference an ISpeaking object.
•  It makes s point to the new Dog object.
A Dog object can masquerade as an ISpeaking object, because
every Dog object is an ISpeaking object.

1. ISpeaking s = new Dog(“Ralph”, null);

11	

Polymorphism
Subclasses of a class can define their own unique behaviors and yet
share some of the same functionality of the parent class.

public class Animal {
 public void printDescription(){
 System.out.println("This is an
 Animal.");
 }
}

public class Cat extends Animal {
 @Override
 public void printDescription(){
 super.printDescription();
 System.out.println("And this is a Cat.");
 }
}

public class TestAnimal {
 public static void main(String[] args) {
 Animal myAnimal = new Animal();
 Animal myCat= new Cat();
 myAnimal.printDescription();

 myCat.printDescription();
 }
}

output?

Polymorphism and Dynamic Binding
•  Definition:

o  Static type: The type (class) of a variable. Also known as
compile-time type.

o Dynamic type: The class of the object the variable
references. Also known as run-time type.

1. ISpeaking s = new Dog(“Ralph”, null);

Static Type Dynamic Type

2. s = new Bird(); //OK

This is OK, because Bird is a subtype of Ispeaking.
The static type of s remains Ispeaking (it will always be that),
but its dynamic type has gone from Dog to Bird.

12	

Polymorphism and Dynamic Binding

Even though the static type of d is Dog,
its dynamic type is Retriever.

However, an explicit downcast is still required.

3. Dog d = new Retriever(“Clover”, null);

4. Retriever r = (Retriever) d;

This is OK, because Retriever is a subtype of Dog.

This is also OK, because

The compiler does not see the run- time type of a
variable, only its static type. A cast changes the static
type of a variable.

Polymorphism and Dynamic Binding

5. d = new Bird(); //compiler error

6. d = (Dog) s;

Bird is not a subtype of Dog.

This compiles, but fails at runtime with a ClassCastException.

7. d = new Dog(“Ralph”, null);
8. d.speak(); // “woof ”
9. d = new Retriever(“Clover”, null);
10.d.speak(); // “raooou”

13	

Abstract Class
•  Suppose that we want to add a Cat class

class Cat implements ISpeaking {
 private String name;
 public Cat(String name) {
 this.name = name;
 }
 @Override
 public void speak(){
 System.out.println("miao");
 }
 public String getName() { return name; }
}

Recall Dog
public class Dog implements ISpeaking, ILicensable {
 private String name;
 private License license;
 public Dog(String name, License license) {
 this.name = name; this.license = license;
 }
 @Override
 public void speak() {
 System.out.println("woof");
 }
 @Override
 public License getLicense() { return license; }
 public String getName() { return name; }
}

14	

Abstract Class
•  To allow the class to have a method that is declared

but not implemented, we can make the class abstract.

public abstract class Pet implements ISpeaking{
 private String name;
 protected Pet(String name) {
 this.name = name;
 }
 public String getName() {
 return name;
 }
 public abstract void speak();
}

15	

Abstract Class - Rules
•  An abstract method is declared with the abstract

keyword, and ends with a semicolon instead of a pair
of braces with a method body.

•  All methods of an interface are automatically
abstract.

•  If a class contains an abstract method, the class must
also be declared abstract.

•  You cannot create an instance of an abstract class
with new.

Dog and Cat classes
class Cat extends Pet{
 private String name;
 public Cat(String name) {
 super(name);
 }
 @Override
 public void speak(){
 System.out.println("miao");
 }
 public String getName() { return name; }
}

16	

Interfaces vs. Abstract Classes
•  A Java class can inherit from only one class, even if

the superclass is an abstract class. However, a class
can "implement" (inherit from) as many Java
interfaces as you like.

•  A Java interface cannot implement any methods, nor
can it include any fields except "final static"
constants. It only contains method prototypes and
constants.

Dog and Cat classes
public class Dog extends Pet implement ILicensable {
 private String name;
 private License license;
 public Dog(String name, License license) {
 super(name); this.license = license;
 }
 @Override
 public void speak() {
 System.out.println("woof");
 }
 @Override
 public License getLicense() { return license; }
 public String getName() { return name; }
}

17	

Root of the Java Class Hierarchy
•  Every class in Java is a subclass of java.lang.Object.
•  Several predefined methods:

o public String toString(): returns a string representation
of the object (read the source code for the default
implementation). We commonly override toString() to
provide a more useful description.

o public final Class<?> getClass(): returns the runtime
class of this Object.

o public boolean equals(Object obj): indicates whether
some other object is "equal to" this one.

Object References and Equality
•  The operation == determines whether or not two

references are the same. It does not determine
whether the objects are “the same”.

String s = "hurley";
String t = "HURLEY".toLowerCase();
System.out.println(s==t); //false
System.out.println(s.equals(t)); //true

The String class overrides equals() to check whether the
characters are the same. (check the source code!)

18	

Example of Overriding equals()
public class Point {
 public int x = 0;
 public int y = 0;
 public Point(int a, int b) {
 x = a; y = b;
 }
 @Override
 public boolean equals(Object obj) {
 if (obj == null || obj.getClass() != this.getClass()) {
 return false;
 }
 Point other = (Point) obj;
 return x == other.x && y == other.y;
 }
}

